A Scalable Numerical Method for Simulating Flows Around High-Speed Train Under Crosswind Conditions
نویسندگان
چکیده
This paper presents a parallel Newton-Krylov-Schwarz method for the numerical simulation of unsteady flows at high Reynolds number around a high-speed train under crosswind. With a realistic train geometry, a realistic Reynolds number, and a realistic wind speed, this is a very challenging computational problem. Because of the limited parallel scalability, commercial CFD software is not suitable for supercomputers with a large number of processors. We develop a Newton-KrylovSchwarz based fully implicit method, and the corresponding parallel software, for the 3D unsteady incompressible Navier-Stokes equations discretized with a stabilized finite element method on very fine unstructured meshes. We test the algorithm and software for flows passing a train modeled after China’s high-speed train CRH380B, and we also compare our results with results obtained from commercial CFD software. Our algorithm shows very good parallel scalability on a supercomputer with over one thousand processors. AMS subject classifications: 76D05, 76F65, 65M55, 65Y05
منابع مشابه
CFD Simulation of High-speed Trains: Train-induced Wind Conditions on Trackside Installations
Speed is the created air flow as well as slipstream effects as the trains move. These effects can have some level of impact on fuel and energy efficiency of the train, but their other important outcome is the emergence of turbulent flows at higher speeds which can cause aerodynamic drag forces followed by noise and vibration. Thus, slipstream effects have significant importanc...
متن کاملOverview of Direct Numerical Simulation of Particle Entrainment in Turbulent Flows
An overview of removal and re-entrainment of particles in turbulent flows is presented. The procedure for the direct numerical simulation (DNS) of the Navier-Stokes equation via a pseudospectral method for simulating the instantaneous fluid velocity field is described. Particle removal mechanisms in turbulent flows in a duct are examined and effects of the near-wall coherent eddies on the parti...
متن کاملA Review of Recent Studies on Simulations for Flow around High-Speed Trains
Fluid flow around bluff bodies occurs in numerous fields of science and engineering, such as flows pass vehicles, cables, towers and bridges. These flows have been studied experimentally and numerically for the last several decades. The investigation of flow around high-speed trains is an important application of bluff bodies. Fluid flow, aerodynamic forces and moments, separation and wake regi...
متن کاملNumerical simulation of flow around a simplified high-speed train model using OpenFOAM
Detailed understanding of flow physics on the flow over a high-speed train (HST) can be accomplished using the vast information obtained from numerical simulation. Accuracy of any simulation in solving and analyzing problems related to fluid flow is important since it measures the reliability of the results. This paper describes a numerical simulation setup for the flow around a simplified mode...
متن کاملEvaluation of Recirculation Time in Bubble Train Flow by Using Direct Numerical Simulation
In this research, hydrodynamics of the Bubble Train Flows (BTF) in circular capillaries has been investigated by Direct Numerical Simulation (DNS).The Volume of Fluid Based (VOF) interface tracking method and streamwise direction periodic boundary conditions has been applied. The results show that there exists an appropriate agreement between DNS and experimental correlation results. The re...
متن کامل